
3 Decay rates and cross sections

This chapter describes the methodology for the calculations of cross sections
and decay rates in relativistic quantum mechanics. In particular, it introduces
the ideas of Lorentz-invariant phase space, the Lorentz-invariant matrix ele-
ment and the treatment of kinematics in particle decays and interactions. The
end product is a set of master formulas which, once the quantum mechanical
matrix element for a process is known, can be used to obtain expressions for
decays rates and cross sections. Provided the main concepts are understood, it
is possible to skip the details of the derivations.

3.1 Fermi’s golden rule

Much of particle physics is based on the experimental measurements of particle
decay rates and particle interaction cross sections. These experimentally observ-
able phenomena represent transitions between different quantum mechanical states.
In non-relativistic quantum mechanics, transition rates are obtained using Fermi’s
golden rule, which was derived in Section 2.3.6. Fermi’s golden rule for the transi-
tion rate Γ f i from an initial state |i〉 to a final state | f 〉 is usually expressed as

Γ f i = 2π|T f i|2ρ(Ei), (3.1)

where T f i is the transition matrix element and ρ(Ei) is the density of states. The
transition matrix element is determined by the Hamiltonian for the interaction
which causes the transitions Ĥ′. In the limit where the perturbation is weak, the
transition matrix element is given by a perturbation expansion in terms of the inter-
action Hamiltonian,

T f i = 〈 f |Ĥ′|i〉 +
∑

j!i

〈 f |Ĥ′| j〉〈 j|Ĥ′|i〉
Ei − E j

+ · · · .

The transition rate of (3.1) depends on the density of states ρ(Ei),

ρ(Ei) =
∣∣∣∣∣
dn
dE

∣∣∣∣∣
Ei

,
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!Fig. 3.1 Feynman diagrams for e+e− → µ+µ− annihilation and e−q→ e−q scattering.

where dn is the number of accessible states in the energy range E→ E + dE. Alter-
natively, the density of states can be written as an integral over all final-state ener-
gies using the Dirac delta-function to impose energy conservation,

∣∣∣∣∣
dn
dE

∣∣∣∣∣
Ei

=

∫
dn
dE

δ(Ei − E) dE,

giving the alternative form of Fermi’s golden rule

Γ f i = 2π
∫
|T f i|2δ(Ei − E) dn, (3.2)

which appeared as an intermediate step in the derivation of Fermi’s golden rule,
see (2.49).

The transition rate between two states depends on two components, (i) the tran-
sition matrix element, which contains the fundamental particle physics, and (ii) the
density of accessible states, which depends on the kinematics of the process being
considered. The aim of the first part of this book is to develop the methodology for
the calculation of decay rates and interaction cross sections for particle annihila-
tion and scattering processes such as those represented by the Feynman diagrams
of Figure 3.1. In modern particle physics the most complete theoretical approach to
such calculations is to use quantum field theory. Nevertheless, the same results can
be obtained using perturbation theory in relativistic quantum mechanics (RQM).
This requires a relativistic formulation of Fermi’s golden rule where the density of
states is based on relativistic treatments of phase space and the normalisation of
the plane waves used to represent the particles.

3.2 Phase space and wavefunction normalisation

Before discussing the relativistic wavefunction normalisation and phase space, it
is worth briefly reviewing the non-relativistic treatment. In non-relativistic quan-
tum mechanics, the decay rate for the process a → 1 + 2 can be calculated using
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Fermi’s golden rule. To first order in perturbation theory, the transition matrix
element is

T f i = 〈ψ1ψ2|Ĥ′|ψa〉 (3.3)

=

∫

V
ψ∗1ψ

∗
2Ĥ′ψad3x. (3.4)

In the Born approximation, the perturbation is taken to be small and the initial- and
final-state particles are represented by plane waves of the form

ψ(x, t) = Aei(p·x−Et), (3.5)

where A determines the wavefunction normalisation. The integral in (3.4) extends
over the volume in which the wavefunctions are normalised. It is usual to adopt a
scheme where each plane wave is normalised to one particle in a cubic volume of
side a. Using the non-relativistic expression for probability density ρ=ψ∗ψ, this is
equivalent to writing

∫ a

0

∫ a

0

∫ a

0
ψ∗ψ dx dy dz = 1,

which implies that the normalisation constant in (3.5) is given by

A2 = 1/a3 = 1/V,

where V is the volume of the box.
The normalisation of one particle in a box of volume a3 implies that the wave-

function satisfies the periodic boundary conditions1

ψ(x + a, y, z) = ψ(x, y, z), etc.,

as illustrated in Figure 3.2. The periodic boundary conditions on the wavefunction,
for example eipx x = eipx(x+a), imply that the components of momentum are quan-
tised to

(px, py, pz) = (nx, ny, nz)
2π
a
,

1 In terms of counting the number of states, the periodic boundary conditions are equivalent to
requiring that the wavefunction is zero at the boundaries of the volume. This condition implies that
the wavefunction consists of standing waves of the form ψ(x, y, z)= A sin(px x) sin(pyy) sin(pzz),
with px, py and pz such that there are a half-integer number of wavelengths along each side of the
box. Since sin(px x)= (eipx x−e−ipx x)/2i, the wavefunction expressed in this way has forward-going
and backward-going components and the integration over phase space is restricted to positive
values of px, py and pz. The same number of states are obtained with periodic boundary conditions,
with an integer number of wavelengths in each direction. In this case, the phase space integral
extends over both positive and negative values of px, py and pz.
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!Fig. 3.2 The non-relativistic treatment of phase space: (a) the wavefunction of a particle con)ned to a box of side
a satis)es the periodic boundary conditions such that there are an integer number of wavelengths in each
direction; (b) the allowed states in momentum space; and (c) the number of states in a range p → p + dp
in two dimensions.

where nx, ny and nz are integers. This restricts the allowed momentum states to
the discrete set indicated in Figure 3.2b. Each state in momentum space occupies a
cubic volume of

d3p = dpxdpydpz =

(
2π
a

)3

=
(2π)3

V
.

As indicated in Figure 3.2c, the number of states dn with magnitude of momentum
in the range p → p + dp, is equal to the momentum space volume of the spherical
shell at momentum p with thickness dp divided by the average volume occupied
by a single state, (2π)3/V , giving

dn = 4πp2dp × V
(2π)3 ,

and hence

dn
dp
=

4πp2

(2π)3 V.

The density of states in Fermi’s golden rule then can be obtained from

ρ(E) =
dn
dE
=

dn
dp

∣∣∣∣∣
dp
dE

∣∣∣∣∣ .

The density of states corresponds to the number of momentum states accessible
to a particular decay and increases with the momentum of the final-state particle.
Hence, all other things being equal, decays to lighter particles, which will be pro-
duced with larger momentum, are favoured over decays to heavier particles.

The calculation of the decay rate will not depend on the normalisation volume;
the volume dependence in the expression for phase space is cancelled by the factors
of V associated with the wavefunction normalisations that appear in the square of
transition matrix element. Since the volume will not appear in the final result, it
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is convenient to normalise to one particle per unit volume by setting V = 1. In this
case, the number of accessible states for a particle associated with an infinitesimal
volume in momentum space d3pi is simply

dni =
d3pi

(2π)3 .

For the decay of a particle to a final state consisting of N particles, there are N − 1
independent momenta in the final state, since the momentum of one of the final-
state particles can always be obtained from momentum conservation. Thus, the
number of independent states for an N-particle final state is

dn =
N−1∏

i=1

dni =

N−1∏

i=1

d3pi

(2π)3 .

This can be expressed in a more democratic form including the momentum space
volume element for the Nth particle d3pN and using a three-dimensional delta-
function to impose momentum conservation

dn =
N−1∏

i=1

d3pi

(2π)3 δ
3


pa −

N∑

i=1

pi


 d3pN , (3.6)

where pa is the momentum of the decaying particle. Therefore the general non-
relativistic expression for N-body phase space is

dn = (2π)3
N∏

i=1

d3pi

(2π)3 δ
3


pa −

N∑

i=1

pi


 . (3.7)

3.2.1 Lorentz-invariant phase space

The wavefunction normalisation of one particle per unit volume is not Lorentz
invariant since it only applies to a particular frame of reference. In a different ref-
erence frame, the original normalisation volume will be Lorentz contracted by a
factor of 1/γ along its direction of relative motion, as shown in Figure 3.3. Thus,
the original normalisation of one particle per unit volume corresponds to a nor-
malisation of γ= E/m particles per unit volume in the boosted frame of reference.
A Lorentz-invariant choice of wavefunction normalisation must therefore be pro-
portional to E particles per unit volume, such that the increase in energy accounts
for the effect of Lorentz contraction. The usual convention is to normalise to 2E
particles per unit volume. The reason for this particular choice is motivated in Sec-
tion 3.2.3 and also in Chapter 4.
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!Fig. 3.3 The normalisation volume in a particular frame is length contracted along the direction of motion for a
general rest frame.

The wavefunctions ψ appearing in the transition matrix element T f i of Fermi’s
golden rule are normalised to one particle per unit volume,

∫

V
ψ∗ψ d3x = 1.

Wavefunctions with the appropriate Lorentz-invariant normalisation, here written
as ψ′, are normalised to 2E particles per unit volume

∫

V
ψ′∗ψ′d3x = 2E,

and therefore

ψ′ = (2E)1/2ψ.

For a general process, a + b + · · · → 1 + 2 + · · · , the Lorentz-invariant matrix
element, using wavefunctions with a Lorentz-invariant normalisation, is defined as

M f i = 〈ψ′1ψ′2 · · · |Ĥ′|ψ′aψ′b · · · 〉. (3.8)

The Lorentz-invariant matrix element is therefore related to the transition matrix
element of Fermi’s golden rule by

M f i = 〈ψ′1ψ′2 · · · |Ĥ′|ψ′aψ′b · · · 〉 = (2E1 · 2E2 · · · 2Ea · 2Eb · · · )1/2T f i, (3.9)

where the product on the RHS of (3.9) includes all intial- and final-state particles.

3.2.2 Fermi’s golden rule revisited

For a two-body decay a → 1 + 2, the quantum mechanical transition rate is given
by Fermi’s golden rule, which in the form of (3.2) can be written

Γ f i = 2π
∫
|T f i|2δ(Ea − E1 − E2) dn,

where dn is given by (3.7), and hence
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Γ f i = (2π)4
∫
|T f i|2δ(Ea − E1 − E2)δ3(pa − p1 − p2)

d3p1

(2π)3

d3p2

(2π)3 . (3.10)

Using the relation between the transition matrix element and the Lorentz invariant
matrix element of (3.9), this can be written as

Γ f i =
(2π)4

2Ea

∫
|M f i|2δ(Ea − E1 − E2)δ3(pa − p1 − p2)

d3p1

(2π)32E1

d3p2

(2π)32E2
,

(3.11)

with |M f i|2 = (2Ea2E12E2)|T f i|2. One consequence of using wavefunctions with a
Lorentz invariant normalisation, is that the phase space integral over d3p/(2π)3 has
been replaced by an integral over terms like

d3p
(2π)32E

,

which is known as the Lorentz-invariant phase space factor. To prove this is Lorentz
invariant, consider a Lorentz transformation along the z-axis, where the element
d3p transforms to d3p′ given by

d3p′ ≡ dp′xdp′ydp′z = dpxdpy ·
dp′z
dpz

dpz =
dp′z
dpz

d3p. (3.12)

From the Einstein energy–momentum relation, E2 = p2
x + p2

y + p2
z +m2, and the

Lorentz transformation of the energy–momentum four-vector,

p′z = γ(pz − βE) and E′ = γ(E − βpz),

it follows that
dp′z
dpz
= γ

(
1 − β ∂E

∂pz

)
= γ

(
1 − β pz

E

)
=

1
E
γ (E − βpz) =

E′

E
,

which when substituted into (3.12) demonstrates that

d3p′

E′
=

d3p
E
,

and hence d3p/E is Lorentz invariant.
The matrix element M f i in (3.11) is defined in terms of wavefunctions with a

Lorentz-invariant normalisation, and the elements of integration over phase space
d3pi/Ei are also Lorentz invariant. Consequently, the integral in (3.11) is Lorentz
invariant and thus (3.11) expresses Fermi’s golden rule in a Lorentz-invariant form.
This is an important result, it is exactly the required relativistic treatment of transi-
tion rates needed for the calculation of decay rates. The resulting transition rate for
the decay a → 1 + 2 given in (3.11) is inversely proportional to the energy of the
decaying particle in the frame in which it is observed, Ea = γma, as expected from
relativistic time dilation.
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3.2.3 *Lorentz-invariant phase space

The expression for the decay rate given (3.11) can be extended to an N-body decay,
a→ 1+ 2+ · · · +N. In this more general case, the phase space integral involves the
three-momenta of all final-state particles

dLIPS =
N∏

i=1

d3pi

(2π)32Ei
,

where dLIPS is known as the element of Lorentz-invariant phase space (LIPS).
The factors 1/2Ei can be rewritten in terms of a delta-function using (A.6) of
Appendix A and the constraint from the Einstein energy–momentum relationship,
Ei = p2

i + m2
i , which implies that

∫
δ(E2

i − p2
i − m2) dEi =

1
2Ei
.

Hence, the integral over Lorentz-invariant phase space can be written as

∫
· · · dLIPS =

∫
· · ·

N∏

i=1

(2π)−3δ(E2
i − p2

i − m2
i ) d3pi dEi,

which, in terms of the four-momenta of the final-state particles is

∫
· · · dLIPS =

∫
· · ·

N∏

i=1

(2π)−3δ(p2
i − m2

i ) d4 pi.

Similarly, the transition rate for the two-body decay a→ 1+ 2, given in (3.11), can
be written as

Γ f i =
(2π)4

2Ea

∫
(2π)−6|M f i|2δ4(pa − p1 − p2)δ(p2

1 − m2
1)δ(p2

2 − m2
2) d4 p1d4 p2.

The integral now extends over all values of the energies and momenta of each of the
final-state particles. The delta-functions ensure that the decay rate only has contri-
butions from values of the four-momenta of the final-state particles compatible with
overall energy and momentum conservation and the Einstein energy–momentum
relation p2

i = m2
i . This form of the expression for the decay rate elucidates clearly

the point that all the fundamental physics lives in the matrix element. It also pro-
vides a deeper insight into the origin of the phase space integral.
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3.3 Particle decays

In general, a given particle may decay by more than one decay mode. For example,
the tau-lepton can decay into a number of final states, τ−→ e−νeντ, τ−→ µ−νµντ
and τ−→ ντ + hadrons. The transition rate for each decay mode j can be calcu-
lated independently using Fermi’s golden rule. The individual transition rates Γ j

are referred to as partial decay rates or, for reasons that will become apparent
later, partial widths.

The total decay rate is simply the sum of the decay rates for the individual decay
modes. For example, if there are N particles of a particular type, the number that
decay in time δt is given by the sum of the numbers of decays into each decay
channel,

δN = −NΓ1δt − NΓ2δt − · · · = −N
∑

j

Γ j δt = −NΓδt, (3.13)

where the total decay rate per unit time Γ is the sum of the individual decay rates,

Γ =
∑

j

Γ j.

The number of particles remaining after a time t is obtained by integrating (3.13)
to give the usual exponential form

N(t) = N(0) e−Γt = N(0) exp
(
− t
τ

)
,

where the lifetime of the particle in its rest frame τ is referred to as its proper
lifetime and is determined from the total decay rate

τ =
1
Γ
.

The relative frequency of a particular decay mode is referred to as the branching
ratio (or branching fraction). The branching ratio for a particular decay mode BR( j)
is given by the decay rate to the mode j relative to the total decay rate

BR( j) =
Γ j

Γ
.

For example, the branching ratio for the tau-lepton decay τ−→ e−νeντ is 0.17,
which means that on average 17% of the time a τ− will decay to e−νeντ. By defini-
tion, the branching ratios for all decay modes of a particular particle sum to unity.

3.3.1 Two-body decays

The transition rate for each decay mode of a particle can be calculated by using the
relativistic formulation of Fermi’s golden rule given in (3.11). The rate depends on
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!Fig. 3.4 The two-body decay a → 1 + 2 in the rest frame of particle a.

the matrix element for the process and the phase space integral. The matrix element
depends on the nature of the decay and needs to be evaluated for each process. In
contrast, the form of the phase space integral depends only on the number of parti-
cles in the final state. Furthermore, since the integral of (3.11) is Lorentz invariant,
it can be evaluated in any frame.

Consider the two-body decay a→ 1+ 2, shown in Figure 3.4. In the centre-of-
mass frame, the decaying particle is at rest, Ea =ma and pa = 0, and the two daugh-
ter particles are produced back to back with three-momenta p∗ and −p∗. In this
frame, the decay rate is given by (3.11),

Γ f i =
1

8π2ma

∫
|M f i|2δ(ma − E1 − E2)δ3(p1 + p2)

d3p1

2E1

d3p2

2E2
. (3.14)

It is not straightforward to evaluate the phase space integral in this expression, but
fortunately the calculation applies to all two-body decays and has to be performed
only once. The δ3(p1 + p2) term in (3.14) means that the integral over d3p2 has the
effect of relating the three-momenta of the final-state particles giving p2 = −p1 and
hence

Γ f i =
1

8π2ma

∫
|M f i|2

1
4E1E2

δ (ma − E1 − E2) d3p1, (3.15)

where E2 is now given by E2
2 = (m2

2 + p2
1). In spherical polar coordinates,

d3p1 = p2
1dp1 sin θ dθ dφ = p2

1 dp1dΩ,

and (3.15) can be written

Γ f i =
1

8π2ma

∫
|M f i|2δ

(
ma −

√
m2

1 + p2
1 −

√
m2

2 + p2
1

) p2
1

4E1E2
dp1dΩ. (3.16)

At first sight this integral looks quite tricky. Fortunately the Dirac delta-function
does most of the work. Equation (3.16) has the functional form

Γ f i =
1

8π2ma

∫
|M f i|2g(p1) δ( f (p1)) dp1dΩ, (3.17)
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with

g(p1) =
p2

1

4E1E2
, (3.18)

and

f (p1) = ma − E1 − E2 = ma −
√

m2
1 + p2

1 −
√

m2
2 + p2

1. (3.19)

The Dirac delta-function δ( f (p1)) imposes energy conservation and is only non-
zero for p1 = p∗, where p∗ is the solution of f (p∗)= 0. The integral over dp1 in (3.17)
can be evaluated using the properties of the Dirac delta-function (see Appendix A),
whereby

∫
|M f i|2 g(p1) δ

(
f (p1)

)
dp1 = |M f i|2 g(p∗)

∣∣∣∣∣∣
d f
dp1

∣∣∣∣∣∣

−1

p∗
. (3.20)

The derivative d f /dp1 can be obtained from (3.19),
∣∣∣∣∣∣

d f
dp1

∣∣∣∣∣∣ =
p1

(m2
1 + p2

1)1/2
+

p1

(m2
2 + p2

1)1/2
= p1

(
E1 + E2

E1E2

)
,

which, when combined with the expression for g(p1) given in (3.18), leads to

g(p∗)

∣∣∣∣∣∣
d f
dp1

∣∣∣∣∣∣

−1

p1=p∗
=

p∗2

4E1E2
· E1E2

p∗(E1 + E2)
=

p∗

4ma
.

Thus, the integral of (3.20) is
∫
|M f i|2 g(p1) δ( f (p1)) dp1 =

p∗

4ma
|M f i|2,

and therefore,
∫
|M f i|2δ(ma − E1 − E2)δ3(p1 + p2)

d3p1

2E1

d3p2

2E2
=

p∗

4ma

∫
|M f i|2dΩ, (3.21)

and hence (3.14) becomes

Γ f i =
p∗

32π2m2
a

∫
|M f i|2 dΩ. (3.22)

Equation (3.22) is the general expression for any two-body decay. The fundamental
physics is contained in the matrix element and the additional factors arise from the
phase space integral. The matrix element, which may depend on the decay angle,
remains inside the integral. The centre-of-mass frame momentum of the final-state
particles p∗ can be obtained from energy conservation, or equivalently f (p∗)= 0,
and is given by (see Problem 3.2)

p∗ =
1

2ma

√[
(m2

a − (m1 + m2)2
] [

m2
a − (m1 − m2)2

]
.
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3.4 Interaction cross sections

The calculation of interaction rates is slightly more complicated than that for par-
ticle decays because it is necessary to account for the flux of initial-state particles,
where flux is defined as the number of particles crossing a unit area per unit time.
In the simplest case, one can imagine a beam of particles of type a, with flux φa,
crossing a region of space in which there are nb particles per unit volume of type
b. The interaction rate per target particle rb will be proportional to the incident
particle flux and can be written

rb = σφa. (3.23)

The fundamental physics is contained in σ, which has dimensions of area, and is
termed the interaction cross section. Sometimes it is helpful to think of σ as the
effective cross sectional area associated with each target particle. Indeed, there are
cases where the cross section is closely related to the physical cross sectional area
of the target, for example, neutron absorption by a nucleus. However, in general,
the cross section is simply an expression of the underlying quantum mechanical
probability that an interaction will occur.

The definition of the cross section is illustrated by the situation shown in
Figure 3.5a, where a single incident particle of type a is travelling with a veloc-
ity va in a region defined by the area A, which contains nb particles of type b per
unit volume moving with a velocity vb in the opposite direction to va. In time δt,
the particle a crosses a region containing δN = nb(va + vb)Aδt particles of type b.
The interaction probability can be obtained from the effective total cross sectional
area of the δN particles divided by the area A, which can be thought of as the prob-
ability that the incident particle passes through one of the regions of area σ drawn
around each of the δN target particles, as shown in Figure 3.5b. The interaction
probability δP is therefore

δP =
δN σ

A
=

nb(va + vb)Aσδt
A

= nbvσδt,

(va + vb)dt
(a) (b)

!Fig. 3.5 The left-hand plot (a) shows a single incident particle of type a traversing a region containing particles of
type b. The right-hand plot (b) shows the projected view of the region traversed by the incident particle in
time δt.
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where v = va + vb. Hence the interaction rate for each particle of type a is

ra =
dP
dt
= nbvσ.

For a beam of particles of type a, with number density na confined to a volume V ,
the total interaction rate is

rate = ra naV = (nbvσ) naV. (3.24)

The expression of (3.24) can be rearranged into

rate = (nav)(nbV)σ = φNb σ.

Thus the total rate is equal to

rate = flux × number of target particles × cross section,

which is consistent with the definition of (3.23). More formally, the cross section
for a process is defined as

σ =
number of interactions per unit time per target particle

incident flux
.

It should be noted that the flux φ accounts for the relative motion of the particles.

3.4.1 Lorentz-invariant %ux

The cross section for a particular process can be calculated using the relativistic
formulation of Fermi’s golden rule and the appropriate Lorentz-invariant expres-
sion for the particle flux. Consider the scattering process a+ b→ 1+ 2, as observed
in the rest frame where the particles of type a have velocity va and those of type
b have velocity vb, as shown in Figure 3.6. If the number densities of the particles
are na and nb, the interaction rate in the volume V is given by

rate = φa nbV σ = (va + vb) na nb σV, (3.25)

a b

1

2

va vb

!Fig. 3.6 The two-body scattering process a + b→ 1 + 2.
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where φa is the flux of particles of type a through a plane moving at velocity vb,

φa = na(va + vb).

Normalising the wavefunctions to one particle in a volume V , gives na = nb = 1/V ,
for which the interaction rate in the volume V is

Γ f i =
(va + vb)

V
σ. (3.26)

Because the factors of V in the expression for the flux will ultimately be cancelled
by the corresponding factors from the wavefunction normalisation and phase space,
the volume V will not appear in the final result and it is again convenient to adopt
a normalisation of one particle per unit volume. With this choice, the cross section
is related to the transition rate by

σ =
Γ f i

(va + vb)
.

The transition rate Γ f i is given by Fermi’s golden rule, which in the form of (3.10)
gives

σ =
(2π)4

(va + vb)

∫
|T f i|2δ(Ea + Eb − E1 − E2)δ3(pa + pb − p1 − p2)

d3p1

(2π)3

d3p2

(2π)3 .

This can be expressed in a Lorentz-invariant form by writing T f i in terms of the
Lorentz-invariant matrix elementM f i = (2E1 2E2 2E3 2E4)1/2T f i,

σ =
(2π)−2

4 EaEb(va + vb)

∫
|M f i|2δ(Ea + Eb − E1 − E2)δ3(pa + pb − p1 − p2)

d3p1

2E1

d3p2

2E2
.

(3.27)

The integral in (3.27) is now written in a Lorentz-invariant form. The quantity
F = 4EaEb(va + vb) is known as the Lorentz-invariant flux factor. To demonstrate
the Lorentz invariance of F, first write

F = 4EaEb(va + vb) = 4EaEb

(
pa

Ea
+

pb

Eb

)
= 4(Eapb + Ebpa),

⇒ F2 = 16(E2
ap2

b + E2
bp2

a + 2EaEbpapb), (3.28)

and then note that, for the case where the incident particle velocities are collinear,

(pa ·pb)2 = (EaEb + papb)2 = E2
aE2

b + p2
ap2

b + 2EaEbpapb. (3.29)

Substituting the expression for 2EaEbpapb from (3.29) into (3.28) then gives

F2 = 16
[
(pa ·pb)2 − (E2

a − p2
a)(E2

b − p2
b)
]
.
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Thus, F can be written in the manifestly Lorentz-invariant form

F = 4
[
(pa ·pb)2 − m2

am2
b

] 1
2 .

Since both F and the integral in (3.27) are Lorentz invariant, it can be concluded
that the cross section for an interaction is itself Lorentz invariant.

3.4.2 Scattering in the centre-of-mass frame

Because the interaction cross section is a Lorentz-invariant quantity, the cross sec-
tion for the process a+ b→ 1+ 2 can be calculated in any frame. The most conve-
nient choice is the centre-of-mass frame where pa = −pb = p∗i and p1 = −p2 = p∗f ,
and the centre-of-mass energy is given by

√
s = (E∗a + E∗b). In the centre-of-mass

frame, the Lorentz-invariant flux factor is

F = 4E∗aE∗b(v∗a + v∗b) = 4E∗aE∗b

(
p∗i
E∗a
+

p∗i
E∗b

)
= 4p∗i (E∗a + E∗b)

= 4p∗i
√

s.

Using this expression and the constraint that pa + pb = 0, (3.27) becomes

σ =
1

(2π)2

1
4p∗i
√

s

∫
|M f i|2δ

(√
s − E1 − E2

)
δ3(p1 + p2)

d3p1

2E1

d3p2

2E2
. (3.30)

The integral in (3.30) is the same as that of (3.21) with ma replaced by
√

s. There-
fore, applying the results from Section 3.3.1 immediately leads to

σ =
1

16π2p∗i
√

s
×

p∗f
4
√

s

∫
|M f i|2dΩ∗,

where the solid angle element has been written as dΩ∗ to emphasise that it refers to
the centre-of-mass frame. Hence the cross section for any two-body → two-body
process is given by

σ =
1

64π2s

p∗f
p∗i

∫
|M f i|2dΩ∗. (3.31)

3.5 Di'erential cross sections

In many cases it is not only the total cross section that is of interest, but also the dis-
tribution of some kinematic variable. For example, Figure 3.7 shows the inelastic
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p
e-

e-

dΩ

q

!Fig. 3.7 An example of e−p→ e−p scattering where the electron is scattered into a solid angle dΩ.

scattering process e−p → eX where the proton breaks up. Here, the angular distri-
bution of the scattered electron provides essential information about the fundamen-
tal physics of the interaction. In this case, the relevant experimental measurement
is the differential cross section for the scattering rate into an element of solid angle
dΩ = d(cos θ)dφ,

dσ
dΩ
=

number of particles scattered into dΩ per unit time per target particle
incident flux

.

The integral of the differential cross section gives the total cross section,

σ =

∫
dσ
dΩ

dΩ.

Differential cross sections are not restricted to angular distributions. In some
situations, it is the energy distribution of the scattered particle that is sensitive to
the underlying fundamental physics. In other situations one might be interested in
the joint angular and energy distribution of the scattered particles. In each case, it
is possible to define the corresponding differential cross section, for example

dσ
dE

or
d2σ

dEdΩ
.

3.5.1 Di'erential cross section calculations

Differential cross sections can be calculated from the differential form of (3.31),

dσ =
1

64π2s

p∗f
p∗i
|M f i|2dΩ∗. (3.32)

The simplest situation is where the laboratory frame corresponds to the centre-of-
mass frame, for example e+e− annihilation at LEP or pp collisions at the LHC.
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In this case, the differential cross section expressed in terms of the angles of one of
the final-state particles is immediately obtained from (3.32)

dσ
dΩ∗

=
1

64π2s

p∗f
p∗i
|M f i|2. (3.33)

In fixed-target experiments, such as e−p → e−p elastic scattering, where the
target proton is at rest, the laboratory frame is not the centre-of-mass frame and
the calculation is more involved. Here, the differential cross section is most useful
when expressed in terms of the observable laboratory frame quantities, such as
the angle through which the electron is scattered, θ. The differential cross section
with respect to the laboratory frame electron scattering angle can be obtained by
applying the appropriate coordinate transformation to (3.32).

The transformation from the differential cross section in the centre-of-mass frame
to that in the laboratory frame is most easily obtained by first writing (3.32) in a
Lorentz-invariant form, which is applies in all frames. This is achieved by express-
ing the element of solid angle dΩ∗ in terms of the Mandelstam variable t = p1− p3.
For e−p→ e−p scattering, t is a function of the initial- and final-state electron four-
momenta. Using the definitions of the particle four-momenta shown in Figure 3.8,

t = (p∗1 − p∗3)2 = p∗21 + p∗23 − 2p∗1 ·p∗3
= m2

1 + m2
3 − 2(E∗1E∗3 − p∗1 · p∗3)

= m2
1 + m2

3 − 2E∗1E∗3 + 2p∗1p∗3 cos θ∗. (3.34)

In the centre-of-mass frame, the magnitude of the momenta and the energies of the
final-state particles are fixed by energy and momentum conservation and the only
free parameter in (3.34) is the electron scattering angle θ∗, thus

dt = 2p∗1p∗3 d(cos θ∗),

z z

y

p

p

y

p

p

Lab. frame CoM frame

e- e-

e-
e-

p1 p*
1

p*
4

p*
2

p*
3p3

p4

q q *

!Fig. 3.8 The process of e−p→ e−p elastic scattering shown in the laboratory (left) and centre-of-mass (right)
frames.
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and therefore

dΩ∗ ≡ d(cos θ∗) dφ∗ =
dt dφ∗

2p∗1p∗3
. (3.35)

Writing p∗1 and p∗3 respectively as p∗i and p∗f , and substituting (3.35) into (3.32)
leads to

dσ =
1

128π2s p∗2i

|M f i|2dφ∗dt. (3.36)

Assuming that matrix element is independent of the azimuthal angle, the integra-
tion over dφ∗ just introduces a factor of 2π and therefore

dσ
dt
=

1
64πs p∗2i

|M f i|2. (3.37)

The magnitude of the momentum of the initial-state particles in the centre-of-mass
frame can be shown to be

p∗2i =
1
4s

[s − (m1 + m2)2][s − (m1 − m2)2]. (3.38)

Since σ, s, t and |M f i|2 are all Lorentz-invariant quantities, Equation (3.37) gives
a general Lorentz-invariant expression for the differential cross section for the
two-body→ two-body scattering process.

3.5.2 Laboratory frame di'erential cross section

Because (3.37) is valid in all rest frames, it can be applied directly to the example
of e−p→ e−p elastic scattering in the laboratory frame, shown in Figure 3.8. In the
limit where the incident and scattered electron energies are much greater than the
electron rest mass, the laboratory frame four-momenta of the particles are

p1 ≈ (E1, 0, 0, E1),

p2 = (mp, 0, 0, 0),

p3 ≈ (E3, 0, E3 sin θ, E3 cos θ),

and p4 = (E4,p4).

The momenta of the initial-state particles in the centre-of-mass frame are given by
(3.38) and since me , mp,

p∗2i ≈
(s − m2

p)2

4s
, (3.39)
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where s is given by

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 ·p2 ≈ m2
p + 2p1 ·p2

= m2
p + 2E1mp,

and therefore

p∗2i =
E2

1m2
p

s
. (3.40)

The differential cross section in terms of the laboratory frame scattering angle of
the electron can be obtained from

dσ
dΩ
=

dσ
dt

∣∣∣∣∣
dt
dΩ

∣∣∣∣∣ =
1

2π
dt

d(cos θ)
dσ
dt
, (3.41)

where the factor 2π arises from the integral over dφ (again assuming azimuthal
symmetry). An expression for dt/d(cos θ) can be obtained by writing the Mandel-
stam variable t in terms of the laboratory frame four-momenta, defined above,

t = (p1 − p3)2 ≈ −2E1E3(1 − cos θ), (3.42)

where E3 is itself a function of θ. Conservation of energy and momentum imply
that p1 + p2 = p3 + p4, and t can also be expressed in terms of the four-momenta
of the initial and final-state proton,

t = (p2 − p4)2 = 2m2
p − 2p2 ·p4 = 2m2

p − 2mpE4 = −2mp(E1 − E3), (3.43)

where the last step follows from energy conservation, E4 = E1+mp−E3. Equating
(3.42) and (3.43) gives the expression for E3 as a function of cos θ,

E3 =
E1mp

mp + E1 − E1 cos θ
. (3.44)

Because E1 is the fixed energy of the initial-state electron, differentiating (3.43)
with respect to cos θ gives

dt
d(cos θ)

= 2mp
dE3

d(cos θ)
. (3.45)

Differentiating the expression for E3 of (3.44), gives

dE3

d(cos θ)
=

E2
1mp

(mp + E1 − E1 cos θ)2 =
E2

3

mp
,

which when substituted into (3.45) leads to

dt
d(cos θ)

= 2E2
3. (3.46)
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Substituting (3.46) into (3.41), and using the Lorentz-invariant expression for the
differential cross section of (3.37) gives

dσ
dΩ
=

1
2π

2E2
3

dσ
dt
=

E2
3

64π2s p∗2i

|M f i|2.

The momentum of the intial-state particles in the centre-of-mass frame can be elim-
inated using (3.40) and thus

dσ
dΩ
=

1
64π2

(
E3

mpE1

)2

|M f i|2. (3.47)

Finally, the energy of the scattered electron E3 can be expressed in terms of cos θ
alone using (3.44). Therefore the differential cross section can be written as an
explicit function of cos θ and the energy of the incident electron

dσ
dΩ
=

1
64π2

(
1

mp + E1 − E1 cos θ

)2

|M f i|2. (3.48)

The same calculation including the mass of the electron is algebraically more
involved, although the steps are essentially the same.

Summary

The general expression for the decay rate a→ 1 + 2 is

Γ =
p∗

32π2m2
a

∫
|M f i|2dΩ, (3.49)

where p∗ is the magnitude of the momentum of the final-state particles in the rest
frame of the decaying particle, which is given by

p∗ =
1

2mi

√[
(m2

i − (m1 + m2)2
] [

m2
i − (m1 − m2)2

]
.

The expression for the differential cross section for the process a + b→ c + d in
the centre-of-mass frame is

dσ
dΩ∗

=
1

64π2s

p∗f
p∗i
|M f i|2, (3.50)

where p∗i and p∗f are respectively the magnitudes of the initial- and final-state
momenta in the centre-of-mass frame. In the limit where the electron mass can
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be neglected, the differential cross section for e−p → e−p elastic scattering, in the
proton rest frame is

dσ
dΩ
=

1
64π2

(
E3

mpE1

)2

|M f i|2, (3.51)

where E3 is a function of the electron scattering angle.

Problems

3.1 Calculate the energy of the µ− produced in the decay at rest π− → µ−νµ. Assume mπ = 140 GeV,
mµ = 106 MeV and take mν ≈ 0.

3.2 For the decay a→ 1+ 2, show that the momenta of both daughter particles in the centre-of-mass frame p∗ are

p∗ =
1

2ma

√[
(m2

a − (m1 + m2)2
] [

m2
a − (m1 − m2)2

]
.

3.3 Calculate the branching ratio for the decay K+→π+π0, given the partial decay width Γ(K+→π+π0)=
1.2× 10−8 eV and the mean kaon lifetime τ(K+)= 1.2× 10−8 s.

3.4 At a future e+e− linear collider operating as a Higgs factory at a centre-of-mass energy of
√

s= 250 GeV, the
cross section for the process e+e− → HZ is 250 fb. If the collider has an instantaneous luminosity of
2 × 1034 cm−2 s−1 and is operational for 50% of the time, how many Higgs bosons will be produced in )ve
years of running?
Note: 1 femtobarn≡ 10−15 b.

3.5 The total e+e− → γ → µ+µ− annihilation cross section isσ= 4πα2/3s, where α≈ 1/137. Calculate the
cross section at

√
s= 50 GeV, expressing your answer in both natural units and in barns (1 barn= 10−28 m2).

Compare this to the total pp cross section at
√

s= 50 GeV which is approximately 40 mb and comment on the
result.

3.6 A 1 GeV muon neutrino is )red at a 1 m thick block of iron (56
26Fe) with density ρ= 7.874 × 103 kg m−3. If the

average neutrino–nucleon interaction cross section isσ= 8× 10−39 cm2, calculate the (small) probability that
the neutrino interacts in the block.

3.7 For the process a + b → 1 + 2 the Lorentz-invariant -ux term is

F = 4
[

(pa ·pb)2 − m2
am2

b

] 1
2 .

In the non-relativistic limit, βa, 1 and βb, 1, show that

F ≈ 4mamb |va − vb| ,
where va and vb are the (non-relativistic) velocities of the two particles.

3.8 The Lorentz-invariant -ux term for the process a + b → 1 + 2 in the centre-of-mass frame was shown to be
F = 4p∗i

√
s, where p∗i is the momentum of the intial-state particles. Show that the corresponding expression

in the frame where b is at rest is

F = 4mbpa.
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3.9 Show that the momentum in the centre-of-mass frame of the initial-state particles in a two-body scattering
process can be expressed as

p∗2
i =

1
4s

[s − (m1 + m2)2][s − (m1 − m2)2].

3.10 Repeat the calculation of Section 3.5.2 for the process e−p→ e−p where the mass of the electron is no longer
neglected.

(a) First show that

dE3

d(cosθ)
=

p1p2
3

p3(E1 + mp) − E3p1 cos θ
.

(b) Then show that

dσ
dΩ
=

1
64π2 ·

p2
3

p1mp
· 1

p3(E1 + mp) − E3p1 cos θ
· |M!|2,

where (E1, p1) and (E3, p3) are the respective energies and momenta of the initial-state and scattered elec-
trons as measured in the laboratory frame.


